MAGICPAH Molecular Approaches and MetaGenomic Investigations for optimizing Clean-up of PAH contaminated sites
|
Country: European Union
|
Start Date:
1/4/2010
Duration: 48
months
Project Type: RTD
|
Contract Number: 245226
|
Organisation Type:
EC Project |
Topics:
Contaminated land-->Contaminants-->PAH Contaminated land-->Remediation options-->In situ treatment technologies Contaminated land-->Soil and groundwater processes-->Microbiology Diffuse pollution-->Contaminants-->Persistent Organic Pollutants
|
Project objectives:
The main objectives of MAGICPAH are:
1. to generate a knowledge base of the microbial aerobic catabolome with particular relevance to biodegradation of PAHs in various impacted environmental settings
2.to develop concepts to quantify in situ degradation of PAH employing combined hydrogen and carbon stable isotope analysis
3.to identify key players and key reactions involved in anaerobic PAH metabolism
4.to achieve a detailed understanding on key processes for PAH metabolism in marine and composting environments
5.to develop methods to predict the ultimate fate and the kinetics of aerobic degradation of PAH under different conditions of bioavailability
6.to isolate and sequence novel key players in PAH metabolism to understand the genomic basis of niche specificities that allow microbes to thrive and function in extreme PAH impacted environments
7. to investigate the potential synergistic links between environmental biotechnology and medical biotechnology by assessing novel biocatalysts for their use in new biocatalytic processes
8.to integrate detailed catabolome and reactome information through bioinformatic techniques to re-construct metabolic networks
9.to apply gathered information to improve the treatment performance of PAH contaminated sites
|
Project
Summary:
MAGICPAH aims to explore, understand and exploit the catalytic activities of microbial communities involved in the degradation of persistent PAHs. It will integrate (meta-) genomic studies with in-situ activity assessment based on stable isotope probing particularly in complex matrices of different terrestrial and marine environments. PAH degradation under various conditions of bioavailability will be assessed as to improve rational exploitation of the catalytic properties of bacteria for the treatment and prevention of PAH pollution. We will generate a knowledge base not only on the microbial catabolome for biodegradation of PAHs in various impacted environmental settings based on genome gazing, retrieval and characterization of specific enzymes but also on systems related bioavailability of contaminant mixtures. MAGICPAH takes into account the tremendous undiscovered metagenomic resources by the direct retrieval from genome/metagenome libraries and characterization of enzymes through activity screens. These screens will include a high-end functional small-molecule fluorescence screening platform and will allow us to directly access novel metabolic reactions followed by their rational exploitation for biocatalysis and the re-construction of biodegradation networks. Results from (meta-) genomic approaches will be correlated with microbial in situ activity assessments, specifically dedicated to identifying key players and key reactions involved in anaerobic PAH metabolism. Key processes for PAH metabolism particularly in marine and composting environments and the kinetics of aerobic degradation of PAH under different conditions of bioavailability will be assessed in model systems, the rational manipulation of which will allow us to deduce correlations between system performance and genomic blueprint. The results will be used to improve treatments of PAH-contaminated sites.
|
Achieved Objectives:
|
Product Descriptions:
|
Additional Information:
|
Project Resources:
|
Weblink:
http://www.magicpah.org/
|
Funding Programme(s):
EC FP7: Seventh Framework Programme for Research and Technological Development.
|
Link to Organisations:
|
Submitted by:
Professor Paul Bardos
Who does what?
05/10/2012 17:04:00
|